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Eccentricity

Example:  
Hulse-Taylor binary pulsar B1913+16 
Current eccentricity = 0.617 
Crosses LIGO-Virgo threshold in 390 million years 
By this time, eccentricity will have decreased to  

 5 × 10−6
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Eccentricity

Reasons for residual eccentricities 

not enough time to circularize 

three-body processes 

direct capture 

globular clusters                active galactic nuclei
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Eccentricity

Implications 

The detection and measurement of eccentric 

inspiral events could serve to confirm or 

distinguish among various proposed formation 

channels!

Alexandria Tucker - University of Florida



7

Eccentricity

Eccentric binary detection 

Current waveform templates used for LIGO-Virgo are based 

on quasi-circular models.  

This may reduce their efficiency to detect eccentric binaries. 

Considerable effort in this direction is ongoing. 

preliminary evidence of a highly eccentric merger in GW190521
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We develop an accurate map from the initial parameters of an arbitrarily 
eccentric binary orbit to the eccentricity when the gravitational wave 
frequency reaches a detection threshold for a given detector.

Our work

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210
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Scope and approach

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210

post-Newtonian theory 

Initial eccentricity          Arbitrary mass ratios          Schwarzschild limit (spin = 0). ≈ 0.999 𝜂

Osculating orbit elements

Two-timescale analysis
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post-Newtonian Theory
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(Blanchet, Iyer 2003)



11

post-Newtonian Theory
✴ near zone 
✴ weak-field 
✴ slowly moving

r ≪ λ

expansion in   

 

GM
c2r

(c−2)n ⟺ n-PN
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Scope and approach post-Newtonian theory 
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Conservative to 3PN Radiation reaction (RR) 
2.5PN, 3.5PN, & 4.5PN

Lowest order tail - 4PN 
(Pati & Will, 2018)

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210 Alexandria Tucker - University of Florida
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Scope and approach

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210

post-Newtonian theory 

Initial eccentricity          Arbitrary mass ratios          Schwarzschild limit (spin = 0). ≈ 0.999 𝜂

Osculating orbit elements

Two-timescale analysis
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Osculating orbit elements
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Perturbed Kepler Problem 
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Osculating orbit elements
Schwarzschild

m ≡ m1 + m2⃗r ≡ ⃗r1 − ⃗r2 η =
m1m2

m2

⃗r ≡
p

1 + e cos(ϕ − ω)
̂n ⃗h ≡ Gmpĥ

Effective one body problem

Orbital Elements

ι → 0 Ω → 0

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210 Alexandria Tucker - University of Florida

radial cross-track out of plane

p = a(1 − e2)
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Osculating orbit elements

Lagrange planetary equations

dp
dϕ

de
dϕ

dXγ(ϕ)
dϕ

= ϵQγ(Xδ(ϕ), ϕ)

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210 Alexandria Tucker - University of Florida
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Scope and approach

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210

post-Newtonian theory 

Initial eccentricity          Arbitrary mass ratios          Schwarzschild limit (spin = 0). ≈ 0.999 𝜂

Osculating orbit elements

Two-timescale analysis

Alexandria Tucker - University of Florida



18

Two-timescale analysis

dXγ(ϕ)
dϕ

= ϵQγ(Xδ(ϕ), ϕ)

Periodic 
 ⟨Yγ(X̃δ(θ), ϕ)⟩ = 0

∂Yγ /∂ϕ

Secular 
 X̃γ(θ) = ⟨Xγ(θ, ϕ)⟩

dX̃λ /dθ

Two-scale Ansatz

θ ≡ ϵϕ
Xγ(θ, ϕ) ≡ X̃γ (θ) + ϵYγ (X̃δ(θ), ϕ)

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210 Alexandria Tucker - University of Florida
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Scope and approach

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210

post-Newtonian theory 

Initial eccentricity          Arbitrary mass ratios          Schwarzschild limit (spin = 0). ≈ 0.999 𝜂

Osculating orbit elements

Two-timescale analysis

→coupled secular evolution equations for  &   
↳evolve numerically with respect to time 
↳terminate when  crosses LIGO-Virgo 

detectable threshold 
↳find analytic fit for 

p e

𝑝

e(p)
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Evolution equations

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210 Alexandria Tucker - University of Florida

x ≡
c2p
Gm
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LIGO-Virgo threshold

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210

fGW ≈
1
π

Gm
p3/2

pf = 47.12 ( 20M⊙

m
10 Hz

f )
2/3
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Final eccentricity vs. total mass

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210

x ≡
c2p
Gm
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Mass ratio dependence

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210

x ≡
c2p
Gm

∙ test mass limit:  →  
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5.5 PN convergence

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210
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Takeaway 

Small effect except for the most 
massive systems which are very 
relativistic when they cross the 

threshold 
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Eccentricity map
Lowest order textbook solution (Peters & Mathews 1963) 

   with   x = xi
g(e)
g(ei)

g(e) = e12/19 (304 + 121e2)870/2299

PN-corrected 

 x = xi ( 1 + 2/xi

1 + 2/x ) ( 1 − 4/xi

1 − 4/x )
12/19 g(e)

g(ei)

e = g−1 x
xi ( 1 + 2/x

1 + 2/xi ) ( 1 − 4/x
1 − 4/xi )

12/19

g(ei)
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Analytic fits

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210

x ≡
c2p
Gm

Takeaway 

✴PN-corrected map better than 
agreement with numerical solutions 

✴PN-corrected values systematically 
smaller than Peters-Mathews by as 
much as  for  crossing 
LIGO-Virgo threshold at .
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Accuracy of PN

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210

x ≡
c2p
Gm

Takeaway 

✴2.5PN order numerical results agree 
with PM values 

✴3.5PN order has a sign difference, 
causing  to grow, especially at highly 
relativistic distances 

✴adding additional PN terms mitigates 
this behavior
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Summary 
✴Used PN equations of motion including RR to 

4.5PN to analyse late-time eccentricities of 
non-spinning binaries of arbitrary masses 

✴Found that final eccentrics are essentially 
independent of  

✴Found a PN-corrected analytic map for final 
eccentricities that produces consistently 
smaller values than lowest order map by as 
much as  and agrees with numerically 
generated values to a few percent

η

60 %

Conclusion Potential application 
✴Assessing the levels of orbital 

eccentricity that must be 
incorporated into GW templates 

✴Relating measured late-time 
eccentricities to astrophysical 
origins of compact binary inspirals

Future work 
✴Extend work to include spin-orbit 
✴Derive a probability distribution of 

final eccentricity as a function of 
the initial astrophysical 
environment

 Tucker & Will, in Press, Phys. Rev. D   arXiv:2108.12210 Alexandria Tucker - University of Florida


