October 25, 2021 - GReCO Seminar

Residual eccentricity of binary orbits at the gravitational wave detection threshold: estimates using post-Newtonian theory

Alexandria Tucker

Clifford M. Will

University of Florida

dEdL dt dt

Example: Hulse-Taylor binary pulsar B1913+16 Current eccentricity = 0.617 Crosses LIGO-Virgo threshold in 390 million years By this time, eccentricity will have decreased to 5×10^{-6}

Reasons for residual eccentricities

not enough time to circularize

0

direct capture

globular clusters

active galactic nuclei

Implications

The detection and measurement of eccentric inspiral events could serve to confirm or distinguish among various proposed formation channels!

Eccentric binary detection

Current waveform templates used for LIGO-Virgo are **based** on quasi-circular models.

This may reduce their efficiency to detect eccentric binaries.

Considerable effort in this direction is ongoing.

preliminary evidence of a highly eccentric merger in GW190521

Our work

Residual eccentricity of inspiralling orbits at the gravitational-wave detection threshold: Accurate estimates using post-Newtonian theory

Alexandria Tucker^{1,*} and Clifford M. Will^{1,2,†}

Tucker & Will, in Press, Phys. Rev. D arXiv:2108.12210

We develop **an accurate map** from the initial parameters of an arbitrarily eccentric binary orbit to the eccentricity when the gravitational wave frequency reaches a detection threshold for a given detector.

Scope and approach

Initial eccentricity ≈ 0.999

Arbitrary mass ratios η

Schwarzschild limit (spin = 0)

post-Newtonian theory

Osculating orbit elements

Two-timescale analysis

post-Newtonian Theory

$$\vec{a} = -\frac{Gm}{r^2}\hat{n} + \frac{Gm}{r^2}\left(\mathscr{A}_{c}\hat{n} + \frac{1}{\dot{r}}\mathscr{B}_{c}\vec{v}\right) + \frac{8}{5}\eta\frac{Gm}{r^2}\frac{Gm}{rc^3}\left(\dot{r}\mathscr{A}_{rr}\hat{n} + \mathscr{B}_{rr}\vec{v}\right) + \vec{a}_{Tail}$$

$$\mathcal{A}_{c}^{(N)} = \sum_{l,m,n} a_{lmn}^{(N)} \frac{\delta_{l+m+n,N}}{c^{2N}} \left(\frac{Gm}{r}\right)^{l} (\dot{r}^{2})^{m} (v^{2})^{n}$$
$$\mathcal{B}_{c}^{(N)} = \sum_{l,m,n} b_{lmn}^{(N)} \frac{\delta_{l+m+n,N}}{c^{2N}} \left(\frac{Gm}{r}\right)^{l} (\dot{r}^{2})^{m} (v^{2})^{n}$$
$$\mathcal{A}_{rr}^{(N)} = \sum_{l,m,n} c_{lmn}^{(N)} \frac{\delta_{l+m+n,N}}{c^{2N}} \left(\frac{Gm}{r}\right)^{l} (\dot{r}^{2})^{m} (v^{2})^{n}$$
$$\mathcal{B}_{rr}^{(N)} = \sum_{l,m,n} d_{lmn}^{(N)} \frac{\delta_{l+m+n,N}}{c^{2N}} \left(\frac{Gm}{r}\right)^{l} (\dot{r}^{2})^{m} (v^{2})^{n}$$

Tucker & Will, in Press, Phys. Rev. D arXiv:2108.12210

(Blanchet, Iyer 2003)

$$\begin{split} \mathcal{A} &= \frac{1}{r^2} \left\{ -\frac{3\dot{r}^2 \nu}{2} + v^2 + 3vv^2 - \frac{m}{r} (4+2\nu) \right\} + \frac{1}{c^4} \left\{ \frac{15\dot{r}^4 \nu}{8} - \frac{45\dot{r}^4 \nu^2}{8} - \frac{9\dot{r}^2 \nu v^2}{2} \right. \\ &\quad + 6\dot{r}^2 \nu^2 v^2 + 3vv^4 - 4v^2 v^4 + \frac{m}{r} \left(-2\dot{r}^2 - 25\dot{r}^2 \nu - 2\dot{r}^2 v^2 - \frac{13vv^2}{2} + 2v^2 v^2 \right) \\ &\quad + \frac{m^2}{r^2} \left(9 + \frac{87v}{4} \right) \right\} + \frac{1}{c^5} \left\{ -\frac{24\dot{r}vv^2}{5} \frac{m}{r} - \frac{136\dot{r}v}{15} \frac{m^2}{r^2} \right\} \\ &\quad + \frac{1}{c^6} \left\{ -\frac{35\dot{r}^6 \nu}{16} + \frac{175\dot{r}^6 v^2}{16} - \frac{175\dot{r}^6 v^3}{16} + \frac{15\dot{r}^4 v^2}{2} - \frac{135\dot{r}^4 v^2 v^2}{4} + \frac{255\dot{r}^4 v^3 v^2}{8} \right. \\ &\quad - \frac{15\dot{r}^2 vv^4}{2} + \frac{237\dot{r}^2 v^2 v^4}{8} - \frac{45\dot{r}^2 v^3 v^4}{2} + \frac{11vv^6}{4} - \frac{49v^2 v^6}{4} + 13v^3 v^6 \\ &\quad + \frac{m}{r} \left(79\dot{r}^4 \nu - \frac{69r^4 v^2}{2} - 30\dot{r}^4 v^3 - 121\dot{r}^2 vv^2 + 16\dot{r}^2 v^2 v^2 + 20\dot{r}^2 v^3 v^2 \right. \\ &\quad + \frac{75vv^4}{4} + 8v^2 v^4 - 10v^3 v^4 \right) + \frac{m^2}{r^2} \left(\dot{r}^2 + \frac{32573\dot{r}^2 v}{168} + \frac{11\dot{r}^2 v^2}{8} - 7\dot{r}^2 v^3 \right. \\ &\quad + \frac{615\dot{r}^2 v\pi^2}{64} - \frac{26987vv^2}{840} + v^3 v^2 - \frac{123v\pi^2 v^2}{64} - 110\dot{r}^2 v\ln \left(\frac{r}{r_0} \right) \\ &\quad + 22vv^2 \ln \left(\frac{r}{r_0'} \right) \right) + \frac{m^3}{r^3} \left(-16 - \frac{41\,911v}{420} + \frac{44\lambda u}{3} - \frac{71v^2}{2} + \frac{41v\pi^2}{16} \right) \bigg\}, \\ \mathcal{B} &= \frac{1}{c^2} \left\{ -4\dot{r} + 2\dot{r}v \right\} + \frac{1}{c^4} \left\{ \frac{9\dot{r}^3 v}{2} + 3\dot{r}^3 v^2 - \frac{15\dot{r}vv^2}{2} - 2\dot{r}v^2 v^2 + \frac{m}{r} \left(2\dot{r} + \frac{41\dot{r}v}{2} + 4\dot{r}v^2 \right) \right\} \\ &\quad + \frac{1}{c^5} \left\{ \frac{8vv^2 m}{5} \frac{r}{r} + \frac{24v m^2}{5} \right\} + \frac{1}{c^6} \left\{ -\frac{45\dot{r}^5 v}{8} + 15\dot{r}^5 v^2 + \frac{15\dot{r}^5 v^3}{4} + 12\dot{r}^3 vv^2 \right. \\ &\quad - \frac{111\dot{r}^3 v^2 v^2}{6} - \frac{12\dot{r}^3 v^3 v^2}{2} - 2\dot{r}v^2 v^2 + 6\dot{r}v^3 v^4 \\ &\quad + \frac{m}{r} \left(\frac{329\dot{r}^3 v}{6} + \frac{59\dot{r}^3 v^2}{2} + 18\dot{r}^3 v^3 - 15\dot{r}vv^2 - 27\dot{r}v^2 v^2 - 10\dot{r}v^3 v^2 \right) \\ &\quad + \frac{m^2}{r^2} \left(-4\dot{r} - \frac{18\,169\dot{r}v}{840} + 25\dot{r}v^2 + 8\dot{r}v^3 - \frac{123\dot{r}v\pi^2}{32} + 44\dot{r}v \ln \left(\frac{r}{r_0'} \right) \right) \right\}. \end{split}$$

post-Newtonian Theory

* near zone $r \ll \lambda$ * weak-field * slowly moving

and the second second

GM expansion in c^2r

 $(c^{-2})^n \iff n\text{-PN}$

Scope and approach

post-Newtonian theory

 $\vec{a} = -\frac{Gm}{r^2}\hat{n} + \frac{Gm}{r^2}\left(\mathscr{A}_{c}\hat{n} + \frac{1}{\dot{r}}\mathscr{B}_{c}\vec{v}\right) + \frac{8}{5}\eta\frac{Gm}{r^2}\frac{Gm}{rc^3}\left(\dot{r}\mathscr{A}_{rr}\hat{n} + \mathscr{B}_{rr}\vec{v}\right) + \vec{a}_{Tail}$

Conservative to 3PN

Radiation reaction (RR) 2.5PN, 3.5PN, & 4.5PN

Lowest order tail - 4PN (Pati & Will, 2018)

Tucker & Will, in Press, Phys. Rev. D arXiv:2108.12210

Alexandria Tucker - University of Florida 12

Scope and approach

Initial eccentricity ≈ 0.999

Arbitrary mass ratios η

Schwarzschild limit (spin = 0)

post-Newtonian theory

Osculating orbit elements

Two-timescale analysis

Osculating orbit elements

Perturbed Kepler Problem

$$\vec{a} = -\frac{Gm}{r^2}\hat{n} + \frac{Gm}{r^2}\left(\mathscr{A}_{c}\hat{n} + \frac{1}{\dot{r}}\mathscr{B}_{c}\vec{v}\right) + \frac{8}{5}\eta\frac{Gm}{r^2}\frac{Gm}{rc^3}\left(\dot{r}\mathscr{A}_{rr}\hat{n} + \mathscr{B}_{rr}\vec{v}\right) + \vec{a}_{Tail}$$

 δa

Osculating orbit elements

Schwarzschild

 $\iota \to 0 \quad \Omega \to 0 \quad \mathcal{W} \to 0$

Effective one body problem

$$\vec{r} \equiv \vec{r}_1 - \vec{r}_2$$
 $m \equiv m_1 + m_2$ $\eta = \frac{m_1 m_2}{m^2}$

$$\vec{r} \equiv \frac{p}{1 + e\cos(\phi - \omega)} \hat{n} \quad \vec{h} \equiv \sqrt{Gmp} \hat{h}$$
$$p = a(1 - e^2)$$

Osculating orbit elements

Lagrange planetary equations

Scope and approach

Initial eccentricity ≈ 0.999

Arbitrary mass ratios η

Schwarzschild limit (spin = 0)

post-Newtonian theory

Osculating orbit elements

Two-timescale analysis

Tucker & Will, in Press, Phys. Rev. D arXiv:2108.12210

Alexandria Tucker - University of Florida 17

Two-timescale analysis

 $dX_{\gamma}(\phi)$ $= \epsilon Q_{\gamma}(X_{\delta}(\phi), \phi)$ dф

Two-scale Ansatz

	$\theta \equiv \epsilon \phi$	
$X_{\gamma}(\theta,\phi) \equiv$	$\tilde{X}_{\gamma}(\theta) + \epsilon Y_{\gamma}$	$\sqrt{ ilde{X}_{\delta}(heta), \phi}$

Periodic $\langle Y_{\gamma}(\tilde{X}_{\delta}(\theta), \phi) \rangle = 0$ $\partial Y_{\gamma} / \partial \phi$ Secular $\tilde{X}_{\gamma}(\theta) = \langle X_{\gamma}(\theta, \phi) \rangle$ $d\tilde{X}_{\lambda}/d\theta$

Scope and approach

Initial eccentricity ≈ 0.999

Arbitrary mass ratios η

Schwarzschild limit (spin = 0)

post-Newtonian theory

Osculating orbit elements

Two-timescale analysis

→ coupled secular evolution equations for p & e
 → evolve numerically with respect to time
 → terminate when p crosses LIGO-Virgo
 <u>detectable</u> threshold
 → find analytic fit for e(p)

Evolution equations

$$\begin{split} \frac{de}{d\theta} &= -\frac{1}{15} \eta e x^{-5/2} (304 + 121e^2) \\ &+ \frac{1}{30} \eta e x^{-7/2} \bigg[\frac{1}{28} (144392 - 34768e^2 - 2251e^4) + (1272 - 1829e^2 - 538e^4) \eta \bigg] \\ &- \frac{1}{34560} \eta \pi e x^{-4} (4538880 + 6876288e^2 + 581208e^4 + 623e^6) \\ &- \frac{1}{120} \eta e x^{-9/2} \bigg[\frac{1}{252} (43837360 + 4258932e^2 - 1211290e^4 + 77535e^6) \\ &+ \frac{1}{14} (1239608 - 3232202e^2 + 898433e^4 + 13130e^6) \eta - (9216 + 24353e^2 + 45704e^4 + 4304e^6) \eta^2 \bigg] \\ \hline \frac{dx}{d\theta} &= -\frac{8}{5} \eta x^{-3/2} (8 + 7e^2) \\ &+ \frac{1}{15} \eta x^{-5/2} \bigg[\frac{1}{14} (22072 - 6064e^2 - 1483e^4) + 4(36 - 127e^2 - 79e^4) \eta \bigg] \\ &- \frac{1}{360} \eta \pi x^{-3} (18432 + 55872e^2 + 7056e^4 - 49e^6) \\ &- \frac{1}{15} \eta x^{-7/2} \bigg[\frac{1}{756} (8272600 + 777972e^2 - 947991e^4 - 4743e^6) \\ &+ \frac{1}{84} (232328 - 1581612e^2 + 598485e^4 + 6300e^6) \eta - (384 + 1025e^2 + 5276e^4 + 632e^6) \eta^2 \bigg] \end{split}$$

Tucker & Will, in Press, Phys. Rev. D arXiv:2108.12210

 c^2p

Gm

 $x \equiv$

LIGO-Virgo threshold

$$f_{GW} \approx \frac{1}{\pi} \frac{\sqrt{Gm}}{p^{3/2}}$$

 $p_f = 47.12 \left(\frac{20M_{\odot}}{m} \frac{10 \text{ Hz}}{f}\right)^{2/3}$

Final eccentricity vs. total mass

*The smaller the initial values of p, the larger the residual e — less time to circularize

★The smaller the mass, the larger the residual e — lower mass crosses 10 Hz threshold at larger p — less time to circularize

Mass ratio dependence

Takeaway * e_f independent of η to better than 2 %

* Choose $\eta = 5 \times 10^{-5}$

Tucker & Will, in Press, Phys. Rev. D arXiv:2108.12210

Alexandria Tucker - University of Florida 23

5.5 PN convergence

Sago & Fujita 2015

 $\left. \frac{de}{d\theta} \right|_{5.5} = \frac{\eta e x^{-11/2}}{349272000} (1790315545528)$

 $-6186148025656e^2 - 4964186588931e^4)$

Takeaway

Small effect except for the most massive systems which are very relativistic when they cross the threshold

Eccentricity map

Lowest order textbook solution (Peters & Mathews 1963) $x = x_i \frac{g(e)}{g(e_i)}$ with $g(e) = e^{12/19} (304 + 121e^2)^{870/2299}$ **PN-corrected** $x = x_i \left(\frac{1+2/x_i}{1+2/x}\right) \left(\frac{1-4/x_i}{1-4/x}\right)^{12/19} \frac{g(e)}{g(e_i)}$ $e = g^{-1} \left[\frac{x}{x_i} \left(\frac{1 + 2/x}{1 + 2/x_i} \right) \left(\frac{1 - 4/x}{1 - 4/x_i} \right)^{\frac{12}{19}} g(e_i) \right]$

Analytic fits

Takeaway

*PN-corrected map better than 2 % agreement with numerical solutions *PN-corrected values systematically smaller than Peters-Mathews by as much as 30% for $60 M_{\odot}$ crossing LIGO-Virgo threshold at 10 Hz.

Accuracy of PN

PN corrections on values of e_f compared to Peters-Mathews

Takeaway

- *2.5PN order numerical results agree with PM values
- *3.5PN order has a sign difference, causing *e* to grow, especially at highly relativistic distances
- *adding additional PN terms mitigates
 this behavior

Conclusion

Summary

*Used PN equations of motion including RR to 4.5PN to analyse late-time eccentricities of non-spinning binaries of arbitrary masses *Found that final eccentrics are essentially independent of η

★Found a PN-corrected analytic map for final eccentricities that produces consistently smaller values than lowest order map by as much as 60 % and agrees with numerically generated values to a few percent Potential application
*Assessing the levels of orbital
eccentricity that must be
incorporated into GW templates
*Relating measured late-time
eccentricities to astrophysical
origins of compact binary inspirals

Future work

*Extend work to include spin-orbit
*Derive a probability distribution of
final eccentricity as a function of
the initial astrophysical
environment

Tucker & Will, in Press, Phys. Rev. D arXiv:2108.12210

Alexandria Tucker - Oniversity of Florida - 20